Purpose: analyze impedance the inductor and capacitor in a AC circuit.
Background: Introduce that a real inductor model must include a series resistance to account for the resistance of the many turns of wire and thus appears as series.
Zl.real = RL+ jωL
Vin/Iin= Zreal=sqrt(RL^2+ jωL^2)
steps:
step 1. RL=3.4Ω
step 2.
Rext=68.5Ω
DMM reading: 4.54V
Vin= 4.5V
I in,rms=87.3mA
f=20kHz
-make computations to get inductor value.
Z=V/I=4.5/87.3m= 51.546Ω
Z=sqrt(Rext^2+RL^2+(jωL)^2)
ω=20k*2π=1.257*10^5
Z=sqrt((68.5+3.4)^2+(jωL)^2), 51.55^2=71.9^2-(1.257*10^5)^2*L^2
L^2=1.59*10^-7, L=4.0*10^-4H=0.4mH
L=0.4mH
step 3. Investigating a series RLC circuit
make the inductor and capacitor's impedance cancel up.
X= ωL-1/ωC
ωL=1/ωC.
C=1/(ω^2*L)= 1/((1.257*10^5)^2*0.4m)=158nF
The capacitot we use in the circuit is 151nF
The frequence we get max frequence is 12.7kHz
Vpp.ch1=21.2
Vpp.ch2=19.5
Δt=19.46μs
ΔΦ=19.46μ*2*12.7k*360=88.971
Vin(V) | Iin(mA) | Zin | |
5kHz | 5.78 | 29.3 | 197.2696 |
10Khz | 5.22 | 65.1 | 80.18433 |
12.7kHz | 4.95 | 73.5 | 67.34694 |
30kHz | 5.56 | 23.8 | 233.6134 |
50kHz | 7.62 | 1.7 | 4482.353 |
Follow-up question.
1.ans: when in maximum current, the ωL=1/ωC and make the Zeq be the minimum. Therefore, I=V/R and make the current be the maximum.
2.
3.ans:The circuit will me more capacitive(ωL<1/ωC)
4.ans:The circuit will me more inductive(ωL>1/ωC)
No comments:
Post a Comment